Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.012
Filter
1.
Arch Microbiol ; 206(5): 240, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698140

ABSTRACT

Hop stunt viroid (HSVd), a small, single stranded, circular, non-coding infectious RNA known to cause infection in various economically important crop plants. In the present investigation, a study was conducted in the southern part of Karnataka districts of India to detect the possible association of HSVd infection in mulberry plants. A total of 41 mulberry plants showing typical viroid-like symptoms along with asymptomatic samples were collected and screened using conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) using a specific set of HSVd-Fw/ HSVd-Re primers. Out of 41 samples, the study confirmed the presence of HSVd in six samples of mulberry collected from Ramanagara (1 sample), Chikkaballapur (3 samples) and Doddaballapura (2 samples) regions with an expected HSVd amplicon size of ∼ 290-300 nucleotides. The mechanical transmission of HSVd was also confirmed on cucumber (cv. Suyo) seedlings through bioassay, which was reconfirmed by RT-PCR. The amplicons were cloned, sequenced, and the representative nucleotide sequences were deposited in the NCBI GenBank. Subsequently, molecular phylogenetic analysis showed that HSVd mulberry isolates from this study were most closely related to grapevine isolates, indicating a common origin. On the other hand, it was shown to belong to a different group from mulberry isolates so far reported from Iran, Italy, Lebanon, and China. The secondary structure analysis of HSVd mulberry Indian isolates exhibited substitutions in the terminal left, pathogenicity, and variable regions compared to those of the Indian grapevine isolates. As far as this study is concerned, HSVd was detected exclusively in some mulberry plants with viral-like symptoms, but the pathogenesis and symptom expression needs to be further investigated to establish the relationship between HSVd and the disease symptoms in the mulberry plants.


Subject(s)
Morus , Phylogeny , Plant Diseases , Plant Viruses , Viroids , Morus/virology , Viroids/genetics , Viroids/isolation & purification , Viroids/classification , India , Plant Diseases/virology , RNA, Viral/genetics , Nucleic Acid Conformation
2.
Nutrients ; 16(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732560

ABSTRACT

Cardiovascular diseases are a broadly understood concept focusing on vascular and heart dysfunction. Lack of physical exercise, type 2 diabetes, obesity, hypertension, dyslipidemia, thromboembolism, and kidney and lung diseases all contribute to the development of heart and blood vessel dysfunction. Although effective and important, traditional treatment with diuretics, statins, beta blockers, calcium inhibitors, ACE inhibitors, and anti-platelet drugs remains a second-line treatment after dietary interventions and lifestyle changes. Scientists worldwide are still looking for an herbal product that would be effective and free from side effects, either taken together with or before the standard pharmacological intervention. Such herbal-originated medication therapy may include Morus alba L. (white mulberry), Elaeagnus rhamnoides (L.) A. Nelson (sea-buckthorn), Allium sativum L. (garlic), Convallaria majalis L. (lily of the valley), Leonurus cardiaca L. (motherwort), and Crataegus spp. (hawthorn). Valuable herbal raw materials include leaves, fruits, seeds, and even thorns. This short review focuses on six herbs that can constitute an interesting and potential therapeutic option in the management of cardiovascular disorders.


Subject(s)
Cardiovascular Diseases , Crataegus , Garlic , Hippophae , Morus , Plant Extracts , Crataegus/chemistry , Morus/chemistry , Animals , Hippophae/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Leonurus/chemistry , Elaeagnaceae/chemistry , Humans , Phytotherapy
3.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732606

ABSTRACT

Currently, a clear interest has been given to berries due to their richness in active metabolites, including anthocyanins and non-coloured phenolics. Therefore, the main aim of the present work is to investigate the phenolic profile, antioxidant abilities, and antiproliferative effects on normal human dermal fibroblasts (NHDF) and human colon carcinoma cell line (Caco-2) cells of phenolic-rich extracts from three red fruits highly appreciated by consumers: two species of blackberries (Rubus fruticosus and Rubus ulmifolius) and one species of mulberry (Morus nigra). A total of 19 different phenolics were identified and quantified by HPLC-DAD-ESI/MSn and HPLC-DAD, respectively. Focusing on the biological potential of the phenolic-rich extracts, all of them revealed notable scavenging abilities. Concerning the antiproliferative properties, R. fruticosus presented a cytotoxic selectivity for Caco-2 cells compared to NHDF cells. To deeper explore the biological potential, combinations with positive controls (ascorbic acid and 5-fluorouracil) were also conducted. Finally, the obtained data are another piece of evidence that the combination of phenolic-rich extracts from natural plants with positive controls may reduce clinical therapy costs and the possible toxicity of chemical drugs.


Subject(s)
Antioxidants , Cell Proliferation , Fruit , Morus , Oxidative Stress , Phenols , Plant Extracts , Rubus , Humans , Caco-2 Cells , Plant Extracts/pharmacology , Rubus/chemistry , Morus/chemistry , Phenols/pharmacology , Phenols/analysis , Oxidative Stress/drug effects , Antioxidants/pharmacology , Cell Proliferation/drug effects , Fruit/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Chromatography, High Pressure Liquid
4.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731405

ABSTRACT

Chitin, a ubiquitous biopolymer, holds paramount scientific and economic significance. Historically, it has been primarily isolated from marine crustaceans. However, the surge in demand for chitin and the burgeoning interest in biopolymers have necessitated the exploration of alternative sources. Among these methods, the mulberry silkworm (Bombyx mori) has emerged as a particularly intriguing prospect. To isolate chitin from Bombyx mori, a chemical extraction methodology was employed. This process involved a series of meticulously orchestrated steps, including Folch extraction, demineralization, deproteinization, and decolorization. The resultant chitin was subjected to comprehensive analysis utilizing techniques such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 13C nuclear magnetic resonance (NMR) spectroscopy, and wide-angle X-ray scattering (WAXS). The obtained results allow us to conclude that the Bombyx mori represents an attractive alternative source of α-chitin.


Subject(s)
Bombyx , Chitin , Bombyx/chemistry , Animals , Chitin/chemistry , Chitin/isolation & purification , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Magnetic Resonance Spectroscopy , Morus/chemistry
5.
Microbiome ; 12(1): 73, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605412

ABSTRACT

BACKGROUND: The utilization of mulberry branch fiber (MF), the largest by-product of the sericulture industry, is an important issue. Supplementation with MF as a dietary fiber for poultry may serve as a useful application. However, little is known about the effects of MF on liver lipid metabolism and egg yolk fatty acid composition of laying hens and their underlying mechanisms. In this study, we performed a multi-omics investigation to explore the variations in liver lipid metabolism, egg yolk fatty acid composition, gut microbiota, and the associations among them induced by dietary MF in laying hens. RESULTS: Dietary MF had no harmful effects on the laying performance or egg quality in laying hens. The enzyme activities associated with lipid metabolism in the liver were altered by the addition of 5% MF, resulting in reduced liver fat accumulation. Furthermore, dietary 5% MF induced the variation in the fatty acid profiles of egg yolk, and increased the polyunsaturated fatty acid (PUFA) content. We observed a significant reduction in the diversity of both gut bacteria and changes in their compositions after the addition of MF. Dietary MF significantly increased the abundance of genes involved in fatty acid biodegradation, and short-chain fatty acids biosynthesis in the gut microbiota of laying hens. The significant correlations were observed between the liver lipid metabolism enzyme activities of hepatic lipase, lipoprotein lipase, and total esterase with gut microbiota, including negative correlations with gut microbiota diversity, and multiple correlations with gut bacteria and viruses. Moreover, various correlations between the contents of PUFAs and monounsaturated fatty acids in egg yolk with the gut microbiota were obtained. Based on partial-least-squares path modeling integrated with the multi-omics datasets, we deduced the direct effects of liver enzyme activities and gut bacterial compositions on liver fat content and the roles of liver enzyme activities and gut bacterial diversity on egg yolk fatty acid composition. CONCLUSIONS: The results indicate that dietary MF is beneficial to laying hens as it reduces the liver fat and improves egg yolk fatty acid composition through the enterohepatic axis. Video Abstract.


Subject(s)
Fatty Acids , Morus , Animals , Female , Fatty Acids/metabolism , Egg Yolk/metabolism , Morus/metabolism , Lipid Metabolism , Chickens/metabolism , Diet , Fatty Acids, Unsaturated/metabolism , Animal Feed/analysis , Dietary Supplements
6.
Int J Mol Sci ; 25(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38612440

ABSTRACT

Salinity is one of the most serious threats to sustainable agriculture. The Salt Overly Sensitive (SOS) signaling pathway plays an important role in salinity tolerance in plants, and the SOS2 gene plays a critical role in this pathway. Mulberry not only has important economic value but also is an important ecological tree species; however, the roles of the SOS2 gene associated with salt stress have not been reported in mulberry. To gain insight into the response of mulberry to salt stress, SOS2 (designated MulSOS2) was cloned from mulberry (Morus atropurpurea Roxb), and sequence analysis of the amino acids of MulSOS2 showed that it shares some conserved domains with its homologs from other plant species. Our data showed that the MulSOS2 gene was expressed at different levels in different tissues of mulberry, and its expression was induced substantially not only by NaCl but also by ABA. In addition, MulSOS2 was exogenously expressed in Arabidopsis, and the results showed that under salt stress, transgenic MulSOS2 plants accumulated more proline and less malondialdehyde than the wild-type plants and exhibited increased tolerance to salt stress. Moreover, the MulSOS2 gene was transiently overexpressed in mulberry leaves and stably overexpressed in the hairy roots, and similar results were obtained for resistance to salt stress in transgenic mulberry plants. Taken together, the results of this study are helpful to further explore the function of the MulSOS2 gene, which provides a valuable gene for the genetic breeding of salt tolerance in mulberry.


Subject(s)
Arabidopsis , Morus , Salt Tolerance/genetics , Morus/genetics , Plant Breeding , Salt Stress , Agriculture , Plants, Genetically Modified
7.
Physiol Plant ; 176(2): e14309, 2024.
Article in English | MEDLINE | ID: mdl-38659152

ABSTRACT

Although microRNAs (miRNAs) regulate the defense response of a variety of plant species against a variety of pathogenic fungi, the involvement of miRNAs in mulberry's defense against Botrytis cinerea has not yet been documented. In this study, we identified responsive B. cinerea miRNA mno-miR164a in mulberry trees. After infection with B. cinerea, the expression of mno-miR164a was reduced, which was fully correlated with the upregulation of its target gene, MnNAC100, responsible for encoding a transcription factor. By using transient infiltration/VIGS mulberry that overexpressed mno-miR164a or knocked-down MnNAC100, our study revealed a substantial enhancement in mulberry's resistance to B. cinerea when mno-miR164a was overexpressed or MnNAC100 expression was suppressed. This enhancement was accompanied by increased catalase (CAT) activity and reduced malondialdehyde (MDA) content. In addition, mno-miR164a-mediated inhibition of MnNAC100 enhanced the expression of a cluster of defense-related genes in transgenic plants upon exposure to B. cinerea. Meanwhile, MnNAC100 acts as a transcriptional repressor, directly suppressing the expression of MnPDF1.2. Our study indicated that the mno-miR164a-MnNAC100 regulatory module manipulates the defense response of mulberry to B. cinerea infection. This discovery has great potential in breeding of resistant varieties and disease control.


Subject(s)
Botrytis , Disease Resistance , Gene Expression Regulation, Plant , MicroRNAs , Morus , Plant Diseases , Plant Proteins , Morus/genetics , Morus/microbiology , Botrytis/physiology , Botrytis/pathogenicity , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified , Malondialdehyde/metabolism
8.
Arch Microbiol ; 206(5): 213, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616201

ABSTRACT

Mulberry bacterial wilt disease, caused by Ralstonia pseudosolanacearum, is a devastating soil-borne disease in the silk-mulberry-related industry. In this study, through high-throughput sequencing, we compared the rhizosphere bacterial composition of the mulberry-resistant cultivar (K10) and susceptible cultivar (G12), confirming Bacillus as a genus-level biomarker for K10. Next, twelve Bacillus spp. isolates, derived from the rhizosphere of K10, were screened for their antagonistic activity against R. pseudosolanacearum. The isolate showing strong antagonism was identified as B. velezensis K0T24 and selected for further analysis. The fermentation supernatant of B. velezensis K0T24 significantly inhibited the growth of R. pseudosolanacearum (82.47%) and the expression of its pathogenic genes. Using B. velezensis K0T24 in mulberry seedlings also increased defense enzyme activities and achieved a control efficacy of up to 55.17% against mulberry bacterial wilt disease. Collectively, our findings demonstrate the potential of B. velezensis K0T24 in suppressing mulberry bacterial wilt disease.


Subject(s)
Bacillus , Bacterial Infections , Morus , Bacteria , Bacillus/genetics
9.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612872

ABSTRACT

Recently, studies have reported a correlation that individuals with diabetes show an increased risk of developing Alzheimer's disease (AD). Mulberry leaves, serving as both a traditional medicinal herb and a food source, exhibit significant hypoglycemic and antioxidative properties. The flavonoid compounds in mulberry leaf offer therapeutic effects for relieving diabetic symptoms and providing neuroprotection. However, the mechanisms of this effect have not been fully elucidated. This investigation aimed to investigate the combined effects of specific mulberry leaf flavonoids (kaempferol, quercetin, rhamnocitrin, tetramethoxyluteolin, and norartocarpetin) on both type 2 diabetes mellitus (T2DM) and AD. Additionally, the role of the gut microbiota in these two diseases' treatment was studied. Using network pharmacology, we investigated the potential mechanisms of flavonoids in mulberry leaves, combined with gut microbiota, in combating AD and T2DM. In addition, we identified protein tyrosine phosphatase 1B (PTP1B) as a key target for kaempferol in these two diseases. Molecular docking and molecular dynamics simulations showed that kaempferol has the potential to inhibit PTP1B for indirect treatment of AD, which was proven by measuring the IC50 of kaempferol (279.23 µM). The cell experiment also confirmed the dose-dependent effect of kaempferol on the phosphorylation of total cellular protein in HepG2 cells. This research supports the concept of food-medicine homology and broadens the range of medical treatments for diabetes and AD, highlighting the prospect of integrating traditional herbal remedies with modern medical research.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Morus , Humans , Diabetes Mellitus, Type 2/drug therapy , Kaempferols , Molecular Dynamics Simulation , Network Pharmacology , Alzheimer Disease/drug therapy , Molecular Docking Simulation , Fruit , Flavonoids
10.
Front Endocrinol (Lausanne) ; 15: 1344262, 2024.
Article in English | MEDLINE | ID: mdl-38559696

ABSTRACT

Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.


Subject(s)
Hippophae , Morus , Rats , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Hippophae/metabolism , Morus/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Adipose Tissue, White/metabolism , Signal Transduction , Weight Loss
11.
BMC Vet Res ; 20(1): 133, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570815

ABSTRACT

BACKGROUND: Obesity is a serious disease with an alarmingly high incidence that can lead to other complications in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to treatment. RESULTS: After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted functional pathways related to obesity were also differentially abundant between groups. CONCLUSIONS: 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 1-deoxynojirimycin-based products as candidates against obesity.


Subject(s)
Diabetes Mellitus , Dog Diseases , Gastrointestinal Microbiome , Metabolic Diseases , Morus , Humans , Animals , Dogs , 1-Deoxynojirimycin/pharmacology , Plant Extracts/pharmacology , Obesity/drug therapy , Obesity/veterinary , Diabetes Mellitus/veterinary , Metabolic Diseases/veterinary , Plant Leaves
12.
Open Vet J ; 14(3): 750-758, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682142

ABSTRACT

Background: Studies have reported that the phytochemical content of Mulberry (Morus alba Linn.) is influenced by the area where it grows. On the other hand, the study of the bioactivity and toxicity of mulberry leaves from Brunei Darussalam still needs to be completed. In particular, the investigation regarding the safe dose for Mulberry's application from Brunei Darussalam has yet to be studied. Hence, toxicity information must be considered even though the community has used it for generations. Aim: This study investigated Morus alba ethanolic leaf extract (MAE) to observe the acute toxicity in mice. Methods: In particular, this study utilized 12 female Institute of Cancer Research mice, 8 weeks old, divided into 2 groups: the control group and the MAE group (2,000 mg/kg single dose). Physiology, hematology, biochemistry, and histology were analyzed during the study. Results: The examination result indicated no mortality and behavioral changes throughout the testing period. However, the mice developed mild anemia and leukopenia, followed by decreased numbers of neutrophils, lymphocytes, and monocytes. In addition, the mice developed a mild hepatocellular injury, indicated by significant (p < 0.05) elevations of both alanine aminotransferase (ALT) and aspartate transaminase (AST). The histopathological findings of the liver were also consistent with the increment of ALT and AST, indicating mild hepatocellular necrosis through the eosinophilic cytoplasm and pyknosis (p > 0.05). Conclusion: It was evident that a single oral administration of MAE was not lethal for mice (LD50, which was higher than 2,000 mg/kg). However, the administration of high doses of MAE must be carefully considered.


Subject(s)
Mice, Inbred ICR , Morus , Plant Extracts , Plant Leaves , Animals , Morus/chemistry , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Leaves/chemistry , Mice , Female , Brunei , Toxicity Tests, Acute , Liver/drug effects , Liver/pathology
13.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675536

ABSTRACT

Traditional Chinese medicine (TCM) possesses the potential of providing good curative effects with no side effects for the effective management of slow transit constipation (STC), an intestinal disease characterized by colonic dyskinesia. Mulberry leaves (Morus alba L.) and black sesame (Sesamum indicum L.), referred to as SH, are processed and conditioned as per standardized protocols. SH has applications as food and medicine. Accordingly, we investigated the therapeutic potential of SH in alleviating STC. The analysis of SH composition identified a total of 504 compounds. The intervention with SH significantly improved intestinal motility, reduced the time for the first black stool, increased antioxidant activity, and enhanced water content, thereby effectively alleviating colon damage caused by STC. Transcriptome analysis revealed the SH in the treatment of STC related to SOD1, MUC2, and AQP1. The analysis of 16S rRNA gene sequences indicated notable differences in the abundance of 10 bacteria between the SH and model. Metabolomic analysis further revealed that SH supplementation increased the levels of nine metabolites associated with STC. Integrative analysis revealed that SH modulated amino acid metabolism, balanced intestinal flora, and targeted key genes (i.e., SOD1, MUC2, AQP1) to exert its effects. SH also inhibited the AQP1 expression and promoted SOD1 and MUC2 expression.


Subject(s)
Constipation , Morus , Plant Leaves , Sesamum , Morus/chemistry , Constipation/drug therapy , Plant Leaves/chemistry , Sesamum/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Gastrointestinal Microbiome/drug effects , Metabolomics/methods , Male , Gastrointestinal Motility/drug effects , Gastrointestinal Transit/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Gene Expression Profiling , Disease Models, Animal , Multiomics
14.
Food Res Int ; 184: 114245, 2024 May.
Article in English | MEDLINE | ID: mdl-38609224

ABSTRACT

The effects of ultrasound pretreatment (20 kHz, 30 W/L) on mulberries' texture, microstructure, characteristics of cell-wall polysaccharides, moisture migration, and drying quality were investigated over exposure times ranging from 15 to 45 min. Ultrasound induced softening of mulberry tissue, accompanied by an increase in water-soluble pectin and a decrease in chelate-soluble pectin and Na2CO3-soluble pectin concentrations. Noticeable depolymerization of the pectin nanostructure was observed in the pretreated mulberries, along with a decrease in molecular weight, attributed to side-chain structure cleavage. Ultrasound loosened the cell wall structure, increased free water content and freedom, thereby reducing water diffusion resistance. Ultrasound pretreatment reduced drying time by 11.2 % to 23.3 % at various processing times compared to controls. Due to significantly enhanced drying efficiency, the optimal pretreatment time (30 min) yielded dried mulberries with higher levels of total phenolics and total anthocyanins, along with an increased antioxidant capacity. The results of this study provide insights into the mechanisms by which ultrasound pretreatment can effectively enhance the mulberry drying process.


Subject(s)
Morus , Nanostructures , Anthocyanins , Polysaccharides , Pectins , Water
15.
J Agric Food Chem ; 72(18): 10366-10375, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38651967

ABSTRACT

Intestinal stem cells (ISCs) sustain epithelial renewal by dynamically altering behaviors of proliferation and differentiation in response to various nutrition and stress inputs. However, how ISCs integrate bioactive substance morin cues to protect against heat-stable enterotoxin b (STb) produced by Escherichia coli remains an uncertain question with implications for treating bacterial diarrhea. Our recent work showed that oral mulberry leaf-derived morin improved the growth performance in STb-challenged mice. Furthermore, morin supplementation reinstated the impaired small-intestinal epithelial structure and barrier function by stimulating ISC proliferation and differentiation as well as supporting intestinal organoid expansion ex vivo. Importantly, the Wnt/ß-catenin pathway, an ISC fate commitment signal, was reactivated by morin to restore the jejunal crypt-villus architecture in response to STb stimulation. Mechanically, the extracellular morin-initiated ß-catenin axis is dependent or partially dependent on the Wnt membrane receptor Frizzled7 (FZD7). Our data reveal an unexpected role of leaf-derived morin, which represents molecular signaling targeting the FZD7 platform instrumental for controlling ISC regeneration upon STb injury.


Subject(s)
Enterotoxins , Flavonoids , Frizzled Receptors , Morus , Plant Leaves , Stem Cells , beta Catenin , Animals , Morus/chemistry , Flavonoids/pharmacology , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , beta Catenin/metabolism , beta Catenin/genetics , Mice , Plant Leaves/chemistry , Plant Leaves/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Humans , Enterotoxins/metabolism , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestines/drug effects , Intestines/cytology , Flavones
16.
Environ Pollut ; 349: 123929, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38582190

ABSTRACT

Microcystin-LR (MC-LR) is a reproductive toxin produced by cyanobacteria in the aquatic environment and can be ingested by humans through drinking water and the food chain, posing a threat to human reproductive health. However, the toxic mechanisms and prospective interventions for MC-LR-induced ovarian dysfunction at environmental doses are unknown. The mulberry fruit is a traditional natural product of plant origin, with various pharmacological effects, such as antioxidant and anti-inflammatory effects. Here, mice were exposed to MC-LR (10, 100 µg/L) in drinking water for 90 days, during which mice were gavage 600 mg/kg/week of mulberry fruit extract (MFE). It was found that MC-LR can accumulate in mouse ovaries, causing sexual hormone disturbance, inflammatory infiltration, and ovarian pathological damage. Results from RNA-seq were shown that CCL2, a chemokine associated with inflammatory response, was significantly increased in mouse ovary after MC-LR exposure. Further investigation revealed that MC-LR exposure aggravates apoptosis of granulosa cells via the CCL2-CCR10 axis-mediated Jak/Stat pathway. Importantly, MFE can significantly ameliorate these ovarian dysfunction phenotypes by inhibiting the activation of the CCL2-CCR10 axis. This study broadened new insights into the ovarian toxicity of MC-LR and clarified the pharmacological effects of mulberry fruit on ovarian function protection.


Subject(s)
Marine Toxins , Microcystins , Morus , Animals , Female , Microcystins/toxicity , Mice , Morus/chemistry , Ovary/drug effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Plant Extracts/pharmacology , Granulosa Cells/drug effects
17.
Sci Total Environ ; 927: 172352, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608900

ABSTRACT

Mulberry cultivation and silkworm rearing hold a prominent position in the agricultural industries of many Asian countries, contributing to economic growth, sustainable development, and cultural heritage preservation. Applying the soil-mulberry-silkworm system (SMSS) to heavy metal (HM)-contaminated areas is significant economically, environmentally, and socially. The ultimate goal of this paper is to review the main research progress of SMSS under HM stress, examining factors affecting its safe utilization and remediation potential for HM-contaminated soils. HM tolerance of mulberry and silkworms relates to their growth stages. Based on the standards for HM contaminants in various mulberry and silkworm products and the bioconcentration factor of HMs at different parts of SMSS, we calculated maximum safe Cd and Pb levels for SMSS application on contaminated lands. Several remediation practices demonstrated mulberry's ability to grow on barren lands, absorb various HMs, while silkworm excreta can adsorb HMs and improve soil fertility. Considering multiple factors influencing HM tolerance and accumulation, we propose a decision model to guide SMSS application in polluted areas. Finally, we discussed the potential of using molecular breeding techniques to screen or develop varieties better suited for HM-contaminated regions. However, actual pollution scenarios are often complex, requiring consideration of multiple factors. More large-scale applications are crucial to enhance the theoretical foundation for applying SMSS in HM pollution risk areas.


Subject(s)
Bombyx , Environmental Restoration and Remediation , Metals, Heavy , Morus , Soil Pollutants , Metals, Heavy/analysis , Animals , Soil Pollutants/analysis , Environmental Restoration and Remediation/methods , Soil/chemistry
18.
Phytomedicine ; 128: 155526, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564921

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is an important cause of cardiovascular disease, posing a substantial health risk. Recognized as a chronic inflammatory disorder, AS hinges on the pivotal involvement of macrophages in arterial inflammation, participating in its formation and progression. Sangzhi alkaloid (SZ-A) is a novel natural alkaloid extracted from the mulberry branches, has extensive pharmacological effects and stable pharmacokinetic characteristics. However, the effects and mechanisms of SZ-A on AS remain unclear. PURPOSE: To explore the effect and underlying mechanisms of SZ-A on inflammation mediated by macrophages and its role in AS development. METHODS: Atherosclerosis was induced in vivo in apolipoprotein E-deficient mice through a high-fat and high-choline diet. We utilized macrophages and vascular endothelial cells to investigate the effects of SZ-A on macrophage polarization and its anti-inflammatory properties on endothelial cells in vitro. The transcriptomic analyses were used to investigate the major molecule that mediates cell-cell interactions and the antiatherogenic mechanisms of SZ-A based on AS, subsequently validated in vivo and in vitro. RESULTS: SZ-A demonstrated a significant inhibition in vascular inflammation and alleviation of AS severity by mitigating macrophage infiltration and modulating M1/M2 macrophage polarization in vitro and in vivo. Moreover, SZ-A effectively reduced the release of the proinflammatory mediator C-X-C motif chemokine ligand (CXCL)-10, predominantly secreted by M1 macrophages. This reduction in CXCL-10 contributed to improved endothelial cell function, reduced recruitment of additional macrophages, and inhibited the inflammatory amplification effect. This ultimately led to the suppression of atherogenesis. CONCLUSION: SZ-A exhibited potent anti-inflammatory effects by inhibiting macrophage-mediated inflammation, providing a new therapeutic avenue against AS. This is the first study demonstrating the efficacy of SZ-A in alleviating AS severity and offers novel insights into its anti-inflammatory mechanism.


Subject(s)
Alkaloids , Atherosclerosis , Macrophages , Morus , Animals , Atherosclerosis/drug therapy , Macrophages/drug effects , Mice , Alkaloids/pharmacology , Morus/chemistry , Male , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Diet, High-Fat , Humans , RAW 264.7 Cells , Mice, Knockout, ApoE , Endothelial Cells/drug effects , Apolipoproteins E
19.
J Pharm Biomed Anal ; 244: 116125, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38554553

ABSTRACT

As a pivotal enzyme that regulates dephosphorylation in cell activities and participates in the insulin signaling pathway, protein tyrosine phosphatase 1B (PTP1B) is considered to be an important target for the therapy of diabetes. In this work, a rapid and efficient inhibitor screening method of PTP1B was established based on capillary electrophoresis (CE), and used for screening and evaluating the inhibition effect of Traditional Chinese Medicine on PTP1B. Response Surface Methodology was used for optimizing the conditions of analysis. After method validation, the enzyme kinetic study and inhibition test were performed. As a result, the IC50 of PTP1B inhibitors Ⅳ and ⅩⅧ were consistent with reported values measured by a conventional method. It was found that the extracts of Astragalus membranaceus (Fisch) Bunge and Morus alba L. showed prominent inhibition on the activity of PTP1B, which were stronger than the positive controls. Meanwhile, on top of the excellent advantages of CE, the whole analysis time is less than 2 min. Thus, the results demonstrated that a fast and efficient screening method was successfully developed. This method could be a powerful tool for screening inhibitors from complex systems. It can also provide an effective basis for lead compound development in drug discovery.


Subject(s)
Drugs, Chinese Herbal , Electrophoresis, Capillary , Hypoglycemic Agents , Medicine, Chinese Traditional , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Electrophoresis, Capillary/methods , Hypoglycemic Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Medicine, Chinese Traditional/methods , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/analysis , Morus/chemistry , Astragalus propinquus , Humans , Kinetics
20.
Nat Commun ; 15(1): 2492, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509059

ABSTRACT

Biosynthetic enzymes evolutionarily gain novel functions, thereby expanding the structural diversity of natural products to the benefit of host organisms. Diels-Alderases (DAs), functionally unique enzymes catalysing [4 + 2] cycloaddition reactions, have received considerable research interest. However, their evolutionary mechanisms remain obscure. Here, we investigate the evolutionary origins of the intermolecular DAs in the biosynthesis of Moraceae plant-derived Diels-Alder-type secondary metabolites. Our findings suggest that these DAs have evolved from an ancestor functioning as a flavin adenine dinucleotide (FAD)-dependent oxidocyclase (OC), which catalyses the oxidative cyclisation reactions of isoprenoid-substituted phenolic compounds. Through crystal structure determination, computational calculations, and site-directed mutagenesis experiments, we identified several critical substitutions, including S348L, A357L, D389E and H418R that alter the substrate-binding mode and enable the OCs to gain intermolecular DA activity during evolution. This work provides mechanistic insights into the evolutionary rationale of DAs and paves the way for mining and engineering new DAs from other protein families.


Subject(s)
Morus , Morus/genetics , Morus/chemistry , Terpenes , Catalysis , Cycloaddition Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...